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BETWEEN EXTERNAL HEAT AND MASS EXCHANGE

M. M. Razin UDC 66.047:54.149

The impossibility of constancy of evaporation and wet-bulb temperatures in the absence of analogy between
the processes of interphase heat and mass transfer has been shown. It has been noted that, in the general
case, the wet-bulb and adiabatic saturation temperatures depend on the process hydrodynamics and their val-
ues do not always coincide.

In the theory of drying processes, one of the parameters characterizing the state of moist air is the so-called
wet-bulb temperature tw, which is considered to be a thermodynamic parameter [1–4]. And it is assumed thereby that
the evaporation temperature in the constant-drying-rate period is constant and the wet-bulb temperature and the tem-
perature of adiabatic saturation of the air are equal. Since a theoretical justification of the above assumptions is absent,
we will attempt to define more exactly these concepts and redetermine their validity range. To this end, we turn to the
thermodynamics of the process of interphase interaction.

Let us represent the drying process as a series of sequential elementary acts of interaction between some
quantity of moist air with an absolutely dry mass L and a moist material having a dry mass G. Let the interaction
occur at a constant total pressure. Then, in the chosen gas + material system the change in enthalpy within each ele-
mentary act according to the first law of thermodynamics can be given in the form

LdIg + GdIsol = dQad . (1)

The additional heat supplied to the chosen system due to the external heat sources (including the environment loss) is
given as follows:

dQad = − Gqaddu . (2)

We represent the quantity qad as the sum

qad = qad.g + qad.sol . (3)

In the case of the absence of external heat sources (adiabatic process), the enthalpy of the chosen system ac-
cording to (1) should remain constant. At a contact, equilibrium between the phases can be attained when the air be-
comes saturated (upon evaporation of only the free liquid). Let us call the temperature that becomes stable under these
conditions the adiabatic saturation temperature of the gas ta.sat.

Let us represent the change in the specific enthalpy of the solid phase in one elementary act in the form

dIsol = (cliqθs − qb) du + csoldθ . (4)

Here the expression between brackets takes into account the physical heat of a liquid with temperature θs abstracted
from the material due to the water evaporation (du < 0), and the last term takes into account the heat received from
the gas phase and the external sources and expended in heating the material. The physical heat of a bound liquid is
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smaller than the heat of a free liquid cliqθs by the binding energy value qb [5], since the bonding of the liquid to the
dry skeleton (wetting) of the material is accompanied by the release into the environment of a heat corresponding to
this energy.

Solving (1)–(4) in view of the material balance equation in an elementary act

G
L

 du = − dx , (5)

we can express the change in the gas enthalpy in terms of the solid-phase parameters:

dIg = cliqθsdx − qbdx + csol 
dθ
du

 dx + qaddx . (6)

Here the parameters with a subscript s pertain to the solid-phase surface and those without subscripts — to the aver-
age-volume quantities.

Note that the adiabatic saturation temperature of the gas introduced above is more general compared to the
temperature used by some authors (ta.sat), defined for the hypothetical case of the absence of heat expenditures for
heating the material (at θ = const). And Eq. (6) thereby takes on the form dIg = cliqθsdx, where θs = ta.sat, i.e., the
material should be preheated to the temperature ta.sat. For now, however, let us leave the question of the fulfillment of
the condition θs = const open.

We shall use in our further reasoning the I—x diagram of moist air. Let curve 1 (Fig. 1) characterize the
change in the gas parameters in the process of contact with the solid phase and curve 2 — in the parameters of the
solid-phase surface, more precisely, the parameters of the gas that is at equilibrium with the surface (θs = ts). Suppose
that at a given instant of time a gas with parameters characterized by the point A is in contact with a material having
parameters of the point C. Connecting these points, we obtain the phase-contact line AC. Its angular coefficient is
equal to the relation (Is − I)/(xs − x). Consider also the tangent to curve 1 at the point A in question. Its equation is
easy to derive from (6):

dIg

dx
 = cliqθs − qb + csol 

dθ
du

 + qad . (7)

The tangent will intersect the curve at some point B. It is essential to elucidate the relation between the straight lines
AB and AC. The fact is that in many works on the kinetics of the processes of evaporation and convective drying the
assumption about their coincidence is used, i.e., it is assumed that the contact line and the tangent are one and the
same thing [2–4]. Despite the wide use of this assumption in the calculations (calculations of scrubbers, water-cooling
towers, and other heat exchangers of mixing), it is far from evident. In the given case, the equality

dIg

dx
 = 

Is − Ig

xs − x
 . (8)

Fig. 1. Interaction between the gas and solid phases in the I—x diagram of
moist air.
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should take place.
The expressions for the gas-phase enthalpy (total mass and mass that is at equilibrium with the surface) in the

classical representation have the form

Ig = r0x + cd.gt + cvxt , (9a)

Is = r0xs + cd.gts + cvxsts . (9b)

Differentiating (9a) with respect to x, we get

dIg

dx
 = cg 

dt

dx
 + r0 + cvt . (10)

Then from (9b) and (9a), upon a number of manipulations, we have

Is − Ig

xs − x
 = cg 

ts − t

xs − x
 + r0 + cvts , (11)

where cg = cd.g + cvx.
To clarify the conditions under which (8) is fulfilled, we turn to the general balance relations. Let us write

the heat balance for the gas phase in one elementary act in the form

LdIg = L [(r0 + cvt) dx + cgdt] = dQs + dQv + dQad.g . (12)

Here dIg denotes the change in the gas-phase enthalpy in one elementary act, dQs is the heat transferred by the gas to
the solid phase through the interface F:

dQs = − α (t − ts) Fdτ ; (13)

dQvapor is the heat supplied by the vapor that enters the gas phase with temperature ts:

dQv = IvdW = (r0 + cvts) dW ; (14)

dW is the quantity of released vapor:

dW = Ldx = β (xs − x) Fdτ ; (15)

dQad.g is the additional heat supplied from the outside to the gas phase.
In a number of cases, in considering the heat balance in the gas phase, one takes into account the additional

decrease in its enthalpy due to the expansion of released vapor from pressure ps to p [3], for which it is necessary to
introduce into (12) an additional term Qexp with a negative sign. In this case, however, it would also be necessary to
introduce such a term into (6), which contradicts (1) and (4). Consequently, the work of vapor expansion does not
necessarily lead to a decrease in the gas enthalpy. This can be explained by the fact that the released vapor, expand-
ing, simultaneously delivers the work of compression of the vapor present in the air.

The joint solution of (12)–(15) yields

cg 
dt

dx
 = − 

α
β

 
t − ts
xs − x

 + cv (ts − t) + qad.g . (16)

Substituting (16) into (10), we obtain in the general case
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dIg

dx
 = − 

α
β

 
t − ts
xs − x

 + cvts + r0 + qad.g . (17)

Equating (7) to (17) taking into account (3), we have

csol 
dθ
du

 = r − 
α
β

 
t − ts
xs − x

 − qad.sol , (18)

where r = r0 − cliqθs + cvθs + qb is the moisture evaporation heat at temperature θs. Equation (18) relates the parameters
of the contacting phases to the temperature coefficients of drying dθ/du and, therefore, can serve as the basic equation
of material heating.

From comparison of (17) and (11) it follows that in the general case the coincidence of the contact line with
the tangent in the I—x diagram is absent.

We shall further consider the process of evaporation of the free liquid in the absence of additional heat
sources and internal gradients (θs = θ), since this process in the drying theory is one of the basic ones. For this case,
qb = qad.g = qad.sol = 0. Comparing (17) and (11) at qad.g = 0, note that for the tangent to coincide with the contact
line, the ratio between the interphase heat and mass transfer coefficients should satisfy the expression

α ⁄ β = cg . (19)

which is a kind of the known Lewis relation [5–8]. The latter holds only in the presence of a complete analogy be-
tween the processes of interphase heat and mass transfer (coincidence of the thermal and diffusion boundary layers),
which requires equality of the Prandtl (Pr) and Schmidt (Sc) numbers [3, 5, 6]. However, since in the majority of
cases this relation does not hold, there is no reason to argue that the tangent and the contact line coincide.

Consider some consequences of this fact.
First, from here it follows that in the drying process the material temperature cannot be constant in principle,

even upon evaporation of the free liquid. Indeed, let the parameters of the contacting phases at an arbitrary instant of
time be given by the contact line AC (Fig. 1). Let its angular coefficient (t − ts)/(x − xs) have such a value that, ac-
cording to Eq. (18), the condition dθ = 0 is met, i.e., there is no increase in the material temperature. If the change
in the parameters occurred on the AC line, then the angular coefficient of the contact line would remain unaltered and
we could speak of constancy of the evaporation temperature.

Actually, the change in the gas parameters occurs on the AB line. Let, at the next instant of time, the state
of the gas be represented by the point A1. It can easily be seen that the angular coefficient of the contact line A1C
will change. Then the second term in Eq. (18) will also change (at the same values of u, θ, ts, xs, r), the heat balance
is disturbed (dθ ≠ 0), and the material temperature will begin to change ("float").

Since usually for water vapor α ⁄ β < cg, the above inequality decreases the negative term in (18) compared to
the first term in (11). Consequently, the angular coefficient of the tangent is larger than the angular coefficient of the
contact line, and the point B is positioned to the right of the point C. This gives reason to argue that the evaporation
temperature will gradually increase, approaching the adiabatic saturation temperature.

Second, the absence of a constant evaporation temperature according to (17) at ts ≠ const leads to a curvature
of the line of change in the gas enthalpy in the first period of drying, i.e., strictly speaking, this line is not straight.
Therefore, the use in many sources for the constant-drying-rate period of the expression (I2 − I1)/(x2 − x1) = cliqtw is
not accurate enough, and integration of (17) taking into account (18) seems to be more correct.

Third, the use in the calculations of a constant evaporation temperature (ts = const) or the coincidence of the
contact line with the tangent automatically means the assumption of an analogy between the processes of interphase
heat and mass transfer [9], while authors can deny the latter.

The quantitative estimate of the range of change in the evaporation temperature in the first period was made
by numerical integration of the system of ordinary differential equations (16), (18), (5). This system makes it possible
to calculate the change in the parameters of contacting phases for constant quantities of the gas and the solid phase
(periodic process) and in the forward flow (continuous process). For the counterflow of phases in (5) one has to re-
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place the negative sign by a positive one. The initial conditions for the periodic process and the forward flow are as
follows: t = t0, θ = θ0, and u = u0 at x = x0. The results of the calculations are presented in Fig. 2 in the ts − x co-
ordinates. We used the following input data: t0 = 100oC, u0 = 2 kg/kg, x0 = 0.005 kg/kg, and L/G = 20. The internal
heat and moisture gradients were assumed to be absent and, therefore, the material temperature coincided with the
evaporation temperature (θ = ts = tsat). The coefficient ratio α ⁄ β was taken to be equal to 0.85cg (absence of analogy)
and cg (analogy), and the initial temperature of the moist material was varied from 20 to 40oC.

The evaporation of only the free moisture at the known dependence of xs = xsat on tsat was investigated. In
the case of the absence of analogy (Fig. 2a), as was mentioned above, a smooth increase in the material temperature
until equilibrium (adiabatic saturation) is attained is characteristic. Of particular interest is curve 2, pertaining to the
case of the material preheated to the adiabatic saturation temperature. Nevertheless, in the process of contact its tem-
perature is ever changing (first it decreases and then increases again, reaching the previous value at equilibrium). Thus,
the calculations confirm the impossibility of evaporation-temperature constancy in the case of the absence of analogy
even at θ0 = ta.sat.

Note that the range of change in the evaporation temperature in the example being considered is compara-
tively small (about 2oC); therefore, in solving temperature problems, the absence of an analogy is practically impercep-
tible. As for the process of mass transfer, the change in the value of xsat can reach 10%, and this fact cannot be
ignored.

A somewhat different picture of evaporation is observed when the Lewis relation holds (Fig. 2b). In this case,
the evaporation temperature upon completion of the warming-up period is practically constant, although it depends on
the initial temperature of the material and the rate of flow of the phases.

We now turn to the estimation of the adiabatic saturation temperature that can be reached at the end of the
process of contact of phases. The given curves show a clear relation between ta.sat (end points of the curve) and the
initial temperature of the material. The value of ta.sat can be calculated by the following balance equations at the
known dependence of xa.sat on ta.sat:

Lr (xa.sat − x0) + G (csolta.sat − csol0θ0) = L (cg0t0 − cgta.sat) , (20)

where csol = cd.sol + cliqu and csol0 = cd.sol + cliqu0.
From relation (20) it follows that ta.sat depends not only on the initial temperature of the material, but also on

the flow rate of phases L and G. Independence of the flow rates of phases is observed only in the case of θ0 =
ta.sat, i.e., when a material heated to the required temperature is fed into the chamber. Thus, the adiabatic saturation
temperature in the general case is not a thermodynamic parameter of the state of the gas but depends on the quantities
θ0, L, and G. From Fig 2a it also follows that in the absence of an analogy, the evaporation and adiabatic saturation
temperatures can coincide in value only at equilibrium. In the presence of an analogy, these quantities are practically
identical upon completion of the warming-up period.

Consider now the situation where G << L, i.e., the moisture mass is negligibly small compared to the air
mass. Then the air parameters at contact with phases remain practically unaltered. Under these conditions, the tangent

Fig. 2. Change in the evaporation temperature (1–3) and the wet-bulb tempera-
ture (4) in coordinates: a) α ⁄ β = 0.85cg at the initial temperature of the mate-
rial θ0: 1) 40; 2) 31.2; 3) 20oC; b) α ⁄ β = cg, θ0: 1) 40; 2) 33; 3) 20oC.
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direction does not play any role (since the gas enthalpy is invariant). Therefore, in principle, evaporation of a liquid
with a constant temperature is possible. In the given case, it is called the wet (wetted) bulb temperature and its value
can be determined from (18), assuming dθ = 0. For comparison, we give the expressions for calculating tw:

r = 
α
β

 
t − tw

xsat − x
 , (21a)

r = cg 
t − tw

xsat − x
 , (21b)

which correspond to the presence (21b) or absence (21a) of an analogy.
Since α ⁄ β < cg, the ratio (t − tw)/(xsat − x) at the same value of r in (21a) should be larger than in (21b). This

means that the contact line of (21a) is steeper than that of (21b), i.e., the value of tw in the first case is smaller. Thus,
the wet-bulb temperature in the absence of an analogy is lower than in its presence.

The above conclusion is corroborated by the calculations (see Fig. 2), where curves 4 show the change in the
wet-bulb temperature in the process of evaporation. Note that the evaporation and wet-bulb temperatures practically co-
incide upon completion of the heating period. In so doing, tw is a state parameter of the gas (independent of the flow
rate of phases and the material temperature) only at the very beginning of the process and subsequently changes in
accordance with the change in the gas-phase temperature and moisture.

From the calculations, it follows that in the absence of an analogy the wet-bulb temperature (and, accordingly,
the evaporation temperature) in the considered examples is D2o lower than in the presence of an analogy. This cor-
roborates the above conclusion.

We draw attention to one interesting kind of contact of phases, in which a certain exclusion from the above
postulates shows up. Consider a cell with a perfectly mixed layer of the solid phase (Fig. 3) which is blown by a gas
stream with constant parameters t0 and x0. Typical representatives of such a scheme of interaction of phases are
pseudoliquefied and vibromixed layers. Mixing makes it possible to artificially maintain constancy of the solid-phase
characteristics as to the layer volume (but not time). We consider the drying process to be periodic.

As a result of the relatively high velocity of the gas as it flows through the layer, the solid-phase parameters
can change by only an infinitely small value (unlike the gas parameters). Therefore, it may be assumed that during
one elementary act the gas interacts with a material having constant quantities u, θ, xs, and ts along its path. As a re-
sult, in Eq. (17) only the gas parameters x and t are variable.

Consider the practically important case where the gas at the outlet from the layer comes to equilibrium with
the material surface, i.e., the outflowing gas parameters differ but slightly from the surface parameters xs and ts.

Since the gas enthalpy is the state parameter, the Is − I0 difference should be independent of the form of the
path covered by the gas. Therefore, integrating (17) with respect to the parameter x from x0 to xs, for a fixed instant
of time (ts and xs under mixing of the solid phase are independent of x, qad.g = 0), we get

Fig. 3. On the analysis of the mixed layer.
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 ∫ 

x0

xs
dIg

dx
 dx = Is − I0 = ∫ 

x0

xs α
β

 
t − ts
x − xs

 dx + (r0 + cvaports) (xs − x0) . (22)

Comparing (22) and (11), we obtain

1

xs − x0
 ∫ 
x0

xs α
β

 
t − ts
x − xs

 dx = cg 
t0 − ts
x0 − xs

 . (23)

Let us also integrate (18) in the same manner:

csol

xs − x0
 ∫ 

x0

xs
dθ
du

 dx = r − 
1

xs − x0
 ∫ 

x0

xs α
β

 
t − ts
xs − x

 dx . (24)

In the case of mixing, the expression on the left side of (24) represents the averaged value of csol 
dθ

__

du
_  that characterizes

not an individual particle but the whole volume of the material with average-volume temperature and moisture content.
Using (23), we get

csol 
dθ

__

du
_ = r − cg 

t0 − ts
xs − x0

 . (25)

In the case where external heat sources are taken into account, corresponding terms can be introduced into the right
side of (25).

Equation (25) for mixed layers differs from (18) in that it uses not the local values of the temperature t and
the moisture content x of the gas but only their values at the inlet and outlet from the layer. Note also the absence of
both coefficients of interphase heat and mass transfer. Thus, Eq. (25) permits calculating the material heating through-
out the mixed layer mass without taking into account the process of change in the gas state, which is undoubtedly
convenient. Therefore, where the processes in mixed layers are concerned, as a curve of the change in the state of the
gas as it flows through the layer, the contact line can be used.

From expression (25) it follows that the wet-bulb temperature in mixed layers is independent of the coeffi-
cient ratio α ⁄ β and coincides with tw in the presence of an analogy. Nevertheless, this conclusion does not point to
the presence of an analogy in the case under consideration — it is absent because at the local points of the layer Eqs.
(16) and (17) hold. It can be shown, however, that throughout the layer volume the consequences of the absence of
an analogy are opposite in nature and counterbalance each other.

NOTATION

c, heat capacity, J/(kg⋅deg); F, interphase contact surface, m2; G, dry mass (rate of flow) of the solid
phase, kg (kg/sec); I, specific enthalpy, J/kg; L, mass (rate of flow) of dry gas, kg (kg⋅sec); p, pressure of vapor,
Pa; r, moisture evaporation heat, J/kg; r0, same at 0oC; Q and q, total and specific heat, J and J/kg; t, gas tem-
perature, 0oC; u, moisture content of the material, kg of moisture/kg of dry material; x, moisture of the gas phase,
kg/kg of dry air; W, mass of evaporated moisture, kg; α, interphase heat-transfer coefficient, W/(m2⋅deg); β, inter-
phase mass-transfer coefficient, kg/(m2⋅sec); θ, material temperature, 0oC; τ, time. Subscripts: a.sat, adiabatic satura-
tion; g, gas; ad, additional, ad.g, and ad.sol, additional to the gas and the solid phase, respectively; liq, liquid; w,
wet-bulb thermometer; sat, saturated; 0, initial; s, surface; v, vapor; exp, expansion; b, bound; d.g, dry gas; sol,
solid phase; d.sol, dry solid phase.
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